tI40-BeSO8 (Inverse)

tI40–BeSO8 (Inverse)

../_images/structure126.jpg

Image of tI40–BeSO8 (Inverse), generated by Vesta

Lattice Vectors:

\[\begin{split}a_1 &= -0.5132141293~\hat{x} + 0.5132141293~\hat{y} + 0.6879117057~\hat{z}\\ a_2 &= 0.5132141293~\hat{x} - 0.5132141293~\hat{y} + 0.6879117057~\hat{z}\\ a_3 &= 0.5132141293~\hat{x} + 0.5132141293~\hat{y} - 0.6879117057~\hat{z}\\\end{split}\]

Space Group: 120

Point Group of Structure: \(\bar{42}m\)

Structure DOI: https://doi.org/10.1524/zkri.1932.82.1.297

Source: Crystallographic Open Database #1010106

MPB Epsilon Input File: Download

Gap Atlas for \(\varepsilon = 16\)

../_images/gap_atlas-16124.png

Gap Atlas for \(\varepsilon\) = 16 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 14\)

../_images/gap_atlas-14124.png

Gap Atlas for \(\varepsilon\) = 14 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 12\)

../_images/gap_atlas-12104.png

Gap Atlas for \(\varepsilon\) = 12 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 10\)

../_images/gap_atlas-1084.png

Gap Atlas for \(\varepsilon\) = 10 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 8\)

../_images/gap_atlas-846.png

Gap Atlas for \(\varepsilon\) = 8 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 6\)

../_images/gap_atlas-627.png

Gap Atlas for \(\varepsilon\) = 6 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 4\)

../_images/gap_atlas-419.png

Gap Atlas for \(\varepsilon\) = 4 across filling fraction \(\phi\) and frequency \(\omega\).

Gap between Bands 12-13

Below is the band structure and isosurface of tI40–BeSO8 (Inverse) at dielectric contrast \(\varepsilon = 16\), radius \(r = 0.24\) and filling fraction \(\phi = 0.143\).

../_images/band_diagram_b=1214.jpg

Band Structure across first Brillouin Zone.

../_images/tI40-BeSO8_r@gap_12-13.png

View along \(a_1\).