cF136-Si (Inverse)

cF136–Si (Inverse)

../_images/structure64.jpg

Image of cF136–Si (Inverse), generated by Vesta

Lattice Vectors:

\[\begin{split}a_1 &= 1/\sqrt{2}~\hat{y} + 1/\sqrt{2}~\hat{z}\\ a_2 &= 1/\sqrt{2}~\hat{x} + 1/\sqrt{2}~\hat{z}\\ a_3 &= 1/\sqrt{2}~\hat{x} + 1/\sqrt{2}~\hat{y}\\\end{split}\]

Space Group: 227

Point Group of Structure: \(m\bar{3}m\)

Structure DOI: https://doi.org/10.1103/PhysRevB.60.950

Photonics DOI: Gap(s) for space group 227 above band(s) 2 theorized in: https://doi.org/10.1038/nmat979

Source: Inorganic Crystallographic Database #56721

MPB Epsilon Input File: Download

Gap Atlas for \(\varepsilon = 16\)

../_images/gap_atlas-1663.png

Gap Atlas for \(\varepsilon\) = 16 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 14\)

../_images/gap_atlas-1464.png

Gap Atlas for \(\varepsilon\) = 14 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 12\)

../_images/gap_atlas-1253.png

Gap Atlas for \(\varepsilon\) = 12 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 10\)

../_images/gap_atlas-1042.png

Gap Atlas for \(\varepsilon\) = 10 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 8\)

../_images/gap_atlas-823.png

Gap Atlas for \(\varepsilon\) = 8 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 6\)

../_images/gap_atlas-612.png

Gap Atlas for \(\varepsilon\) = 6 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 4\)

../_images/gap_atlas-49.png

Gap Atlas for \(\varepsilon\) = 4 across filling fraction \(\phi\) and frequency \(\omega\).

Gap between Bands 2-3

Below is the band structure and isosurface of cF136–Si (Inverse) at dielectric contrast \(\varepsilon = 16\), radius \(r = 0.21\) and filling fraction \(\phi = 0.153\).

../_images/band_diagram_b=22.jpg

Band Structure across first Brillouin Zone.

../_images/cF136-Si_r@gap_2-3.png

View along \(a_1\).