tI16-CoSiCu2S4 (Direct)

tI16–CoSiCu2S4 (Direct)

../_images/structure8.jpg

Image of tI16–CoSiCu2S4 (Direct), generated by Vesta

Lattice Vectors:

\[\begin{split}a_1 &= -0.4138049235~\hat{x} + 0.4138049235~\hat{y} + 0.8108828341~\hat{z}\\ a_2 &= 0.4138049235~\hat{x} - 0.4138049235~\hat{y} + 0.8108828341~\hat{z}\\ a_3 &= 0.4138049235~\hat{x} + 0.4138049235~\hat{y} - 0.8108828341~\hat{z}\\\end{split}\]

Space Group: 121

Point Group of Structure: \(\bar{42}m\)

Structure DOI: https://doi.org/10.1016/j.jallcom.2004.02.004

Source: Crystallographic Open Database #1533601

MPB Epsilon Input File: Download

Gap Atlas for \(\varepsilon = 16\)

../_images/gap_atlas-168.png

Gap Atlas for \(\varepsilon\) = 16 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 14\)

../_images/gap_atlas-148.png

Gap Atlas for \(\varepsilon\) = 14 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 12\)

../_images/gap_atlas-126.png

Gap Atlas for \(\varepsilon\) = 12 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 10\)

../_images/gap_atlas-104.png

Gap Atlas for \(\varepsilon\) = 10 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 8\)

../_images/gap_atlas-82.png

Gap Atlas for \(\varepsilon\) = 8 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 6\)

../_images/gap_atlas-62.png

Gap Atlas for \(\varepsilon\) = 6 across filling fraction \(\phi\) and frequency \(\omega\).

Gap Atlas for \(\varepsilon = 4\)

../_images/gap_atlas-42.png

Gap Atlas for \(\varepsilon\) = 4 across filling fraction \(\phi\) and frequency \(\omega\).

Gap between Bands 8-9

Below is the band structure and isosurface of tI16–CoSiCu2S4 (Direct) at dielectric contrast \(\varepsilon = 16\), radius \(r = 0.2\) and filling fraction \(\phi = 0.465\).

../_images/band_diagram_b=81.jpg

Band Structure across first Brillouin Zone.

../_images/tI16-CoSiCu2S4@gap_8-9.png

View along \(a_1\).